
Technical Report

CMU/SEI-92-TR-04
ESC-TR-92-04

AD-A258 465'l! I~ili 1 I l I" l ' ~ II•i'It~lllllllll lull ll 'l

Software Process
Development and Enactment:
Concepts and Definitions

A Peter H. Feller
Watts S. Humphrey

September 1992

4wwTIC
ELECTE
DEC 2 91992

fhio do• asmni boa been appioved
., _ |tot public felease aQ _&aje; its I

d1timwution is Uflil4

4K.

0

Technical Report
CMU/SEI-92-TR-04

ESC-TR-92-04
September 1992

Software Process
Development and Enactment:

Concepts and Definitons

Peter H. Feller
Engineering Techniques Program

Watts S. Humphrey
Software Process Research Projuct

Approved for public release.

Distribution unlimitad

Software Engineering Institute
Carnegie Mellon University

"n u , 1-:.' r.," ,,ylvania 15213

Thls technical report was proparod for the

SEI Joint Program Office
ESC/AVS
Hanscom AFG, MA 01731

The Ideas and findings in this report should not be construod as an official
DoD position. It Is published in thn interest of scientific and technical
information exchange.

Review and Approval

Thl report hao boon reviewed and is approved for publication.

FOR THE COMMANDER

John S. Herman, Capt, USAF
SEI Joint Program Office

The Software Engineering Institute is sponsored by the U.S.)epanmont of Defonse.
This report woo funded by the U.S. Dopartment of Defense.
Copyr6hl .. 1992 by Carnegie Mellon Uriverilly.

Thei decu)6nl is avni't.ile .thtough the (Noens Tochn~r.ai inio•rmdton Cenfer OTIC provildes aoross to aid transfer of
irjentif i and 1e';hnical infoirirmlion fner DoD porevinelt, DoU wntr~tgofs and potentil pont(actor,, end other U G Government
agency persornntl aid their contrAiors To au hin a copy. plese cuvnLac DTIC directly Oaeen&e Technical Informiton
(',ril', Atln rF4)A Carnmton Gtation, AluxIndria. VA 22304 A 145
Cupiet of tUiih docununi are also avelaltri t hfroij tht fiafna! TQ,',,.al Irformation GhorrcA For iniformatiJon on ordoring,
pleas. rconupct f4TIl' d oct;y tial,onol Te•cthical Ifleormatori ¶r.oiira U 5 [)apartnmnt of Commeirce, Springfield. VA 221W1

Copie of this dQr unw-llt aro Al0o avaelblabl, frn l esoarch Arj.&.- I" '1400 Forbes Avenue, Suite 302. Pittsburgh, PA 1521 1

Uso of any tlradni•n, iiI h this lfupnit is not iritnrdodl in any way W' tiftlIf'a nii the rights of lia ttacWimark holder

Table of Contents

I Overview

2 The Software Process Context 3
2.1 A Framework for Process Definition 4
2.2 Engineering of Processes 5
2.3 Enactment of Processes 6
2.4 Process Properties 6

3 Software Prlr.ýs;s Definitions 7
3.1 Framework for Process Definition 10
3.2 Engineering of Processes 11
3.3 Enactment of Processes 12
3.4 Process Properties 16

4 Domain-Specific Use of Process Concept Definitions 19
4.1 Project Management Domain 19
4.2 Operating System Domain 20
4.3 Process Engineering Domain 20

5 Conclusions 25
J.-

6 Acknowledgments 27

References A, 29

J ,J• ~ , .:, ,

By

Dit A.,3 2

CMU.SLI-92 IR-4

List of Figures

Figure 2-1 Structure of Process Concepts 3
Figure 3-1 Process Entities and Actions 9
Figure 4-1 Process Term Sample in the Operating System Domain 22

CMU SEI.-92-TR-4

Software Process Development and Enactment:
Concepts and Definitions

Abstract: The scientific treatment of the software process is relatively new
and, as with any new field, the initial terminology is often confusing. When
terms can have a diversity of meanings, technical communication is more
difficult and technological progress is constrained. This paper defines a core
set of concepts about the software process. These concepts are intended to
facilitate communications and to provide a framework for further definitions.
The definitions focus on essential concepts; however, they do not represent a
comprehensive glossary of common software process terms. Following an
initial overview, this paper outlines the basic process concepts which underlie
the definitions. The definitions are then grouped in four sets: a framework for
process definition, an engineering of process, an enactment of process, and
process properties. This is followed by illustrations of the use of these concepts
in several domains. The paper concludes with some observations on the
definition process.

1 Overview

This report includes descriptions of some basic "core" software process terms. Its purpose is
to provide a common communication framework for the software process and to reflect the
views and findings of leading software process researchers. With the growing scientific focus
on the software process, there is a need for common terms and definitions. It is hoped that this
paper will facilitate communication and foster continued deve!opment of software process
technology. It is also hoped that this basic definition set will serve as a foundation for further
definitions and ultimately a comprehensive glossary of software process terminology.

This effort was initiated at the 6th International Software Process Workshop (ISPW6). Several
workshop participants noted the need for a document to describe and define the terms com-
monly used by the software process community. A small group headed by Peter Feiler and
Watts Humphrey volunteered to develop these definitions. The plan was to focus on a core set
of approximately 25 to 30 terms that covered the basic set of process concepts. With input
from many sources, the authors have established a core set of definitions and documented
them in this report. To limit the numb2r of terms, terms whose definitions can be easily mapped
to the abstract concepts defined here have been omitted. To constrain the scope of this work,
many terms with applicable existing definitions have also been omitted. Thus, this document
does not represent a comprehensive glossary of terms in the software process domain.

An appreciation of the importance of definitions can be seen from the work of Simon and oth-
ers. They have shown that people retain information in chunks [Simon 81]. People typically
think of these chunks as units, and they have widely varying chunk "vocabularies" with which
they are fluent. There is also evidence that expert knowledge is built by the accumulation of
an expanding store of such "chunks." It would thus appear that one's ability to think and to

CIMUUSEI-92-TR.4
1

communicate can be substantially enhanced with a precisely defined set of rich abstractions.
As a broad community of profPssionals arrives at a common understanding of terms to de-
scribe common abstractions, it is better able to communicate succinctly and precisely. In ad-
vanced technical work, communication permits now work to be built on prior achievements.
Improved communication thus facilitates more rapid technological advancement and more
rapid application of that technology to the betterment of humankind.

Process concepts are being applied to software with -increasing success ([Humphrey 91],
[Kolkhorst 88]) but the rate of application of these concepts is limited both by the relatively
primitive state of knowledge In this new field and by the lack of a common and precise basis
for technical communication. The first requirement for precise communication is an agreed-
upon core of terminology. Without such agreement, people are less able to understand others'
work and to build upon it. As software evolves from a craft to an engineering discipline, tech-
nical advances must draw on a broader context than can be reached through personal expe-
rience. The basic reason for this report is to propose an initial foundation for communication
on software process.

Section 2 of this paper provides the conceptual context for the definitirrIs, followed, in Section
3, by the software process definitions. Many of the term. dre accompanied by explanatory
comments. Section 4 illustrates the use of these abstract concept definitions to describe some
common process terms. Section 5 contains a brief summary of the authors' views on the state
of proccss tUcliriology and what can be expected in the f.jture.

2 CCMU SEI-92-TR-4

2 The Software Process Context

The meanings of terms are often dependent on the contexts in which they are used. The def-
initions in this paper were developed within the context of the authors' views and opinions on
the software process. Rather than require the reader to infer the context for these definitions,
the paper starts with a brief discussion of this context. It is the authors' view, however, that as
other fields apply process principles, many of these definitions will be found applicable.

A definition framework has been found to be useful for thinking about the software process
and the most critical terms needed to define and discuss it. It has helped to detect gaps and
has clarified the relationships of the various terms. The selected structure is shown in Figure

2-1, which identifies the overall relationships among software and process activities and indi-

cates the activities to which the various definitions r.late. This overall structure has been help-
ful in this definition work and it may also be useful to the reader.

Process Framework

Process The Process Development Process Static

Engineering -;-Properties

Process is used to develop and evolve Dynamic
Enactment Properties

Software The Software Development Process Static
Engineering Properties

Process is used to develop and evolve Dynamic
Enactment \..i.................ni. Properties

Software Products

are used to develop and evolve

Resultsfousr

Figure 2-1 Structure of Process Concepts

CMU•SEI-92-TR-4 3

Another context question concerns the scr:- ;p: • .c•. issues to be covered. While there is
considerable interest and activity on the - - je-.cs of process management and process
improvement, the scope of these definit ,. ;ias ',een limited intentionally to definition, mod-
eling, and enactment issues. This does not imply that the broader management issues are not
important, but that their inclusir," would extend the scope of this work far beyond the authors'
original intent. There is ale , ',t ing literature on process management topics that provides
at least some definitional • _: ...ce ([Humphrey 89], [Paulk 91]).

Finally, there is no simple way to limit the scope of a definition document. In a subject as new
as the software process, many ordinary terms can have subtle meanings. The selection of
terms to include in these definitions was thus based on two criteria: the term represents an
essential process concept that cannot easily be derived from other concepts, or the term is
currently being used inconsistently. As a result, terms such as model, definition, and fidelity
have been included while subprocess, template, or cue have not.

2.1 A Framework for Process Definition

Software development organizations have found that by defining their processes they improve
th,.ir effectiveness ([Humphrey 91], [Kolkhorst 88]). To the extent that software process defi-
nitions1 make high-quality software easier and more economical to produce, they will become
widely valued and used. This means that software process definitions must be both useful to
the practitioners and reasonably economical to produce. Experience to date, however, dem-
onstrates that the development of a comprehensive software process definition can be very
expensive and time consuming. Thus, there is a premium on widely applicable means for de-
veloping general purpose process aetinitions togetner with techniques iol reusing, tdiloring,
and enhancing them. Just as with software, this implies that large scale sottware processes
should be carefully designed and constructed.

The concept of a software process architecture can be best described by examining how or-
ganizations are likely to use process definitions. Rather than naving a single mcno:;thic pr&
cess that all projects must use, they will likely find that different projects will have differing
needs. For example, the development project for enhancing a large, widely-used product will
likely require some different process activities from a project to develop a new program for a
single user. Since process development is expensive, there is considerable motivation for pro-
cess commonality and sharing. This is enhanced by the fact that different projects in the same
organization will likely have many common activitien.. Large organizations will have many pro-
cess definitions that they wish to share. The more logical and explicit the relationship among
these definitions, the more likely it is that elements of the various project processes can be
shared.

'The reader should note a potential confusion with terminology This paper is about the definition of process terms.
One such term, as used in this paragraph. is "process definition." which is lai•r -•{,,-,•d as an implempntat,on of
a process design in the form of a parlia;ly orde-ed set of process steps that is enactaLbe.

4 CMU.'SEI-92-TR-4

One way to address the need to share process definitions is to develop a set of general pur-

pose, reusable process elements. Generality, however, requires interfaces and structural
standards; a complete set of such interfaces and standards comprises a process architecture.
A properly conceived process architecture should permit its member process elements to be
more widely used and thus to be more economically viable.

Another question concerns the degree of process refinement. A complex software process
can be viewed as a nested set of abstractions. Each process is composed of subprocesses,
each of which in turn may also have smaller elements. While there is no clear technical limit
to the level of refinement for a software process, there are practical concerns, including the
scale of the projects for which the process is designed, the degree to which the work is parti-
tioned among implementors, the resources and time available for process definition, the level
of capability or understanding of the process users, and the scalability of the process itself.

2.2 Engineering of Processes

The software process can be viewed in much the same way as software. It has many of the
same artifacts and requires quite similar disciplines and methods [Osterweil 87). It is useful to
think about the software process development life cycle in software development terms. For
example, one should start with clear requirements followed (or, more properly, accompanied)
by architecture and design. Processes must be validated against users' needs, and limited
prototypes may be needed before full scale development is undertaken. Special testing is re-
quired, as is planning, instantiation, migration from the prior process, and operational support.

Regardless of the degree of testing, all process bugs are not generally found before general
process instantiation and enactment. Because software processes typically require at least
partial human enactment, there is a major requirement and usability problem and it is much
more difficult to do effective testing without end-user involvement. It is likely that only a small
fraction of the total number of process "bugs" will be found in early laboratory testing. It is thus
a.v-:,able to follow process development testing with early uLer prototype testing. Even then,
as the projects evolve and the software professionals gain experience with the process, there
will be many ideas for further improvement. It is thus important for organizations to establish
mechanisms to obtain continual user feedback to guide process repair and evolution.

The software development community is still learning that timely and comprehensive user
feedback is crucial to a quality development process. In developing the software process, it
takes considerable experience before process d3signers can produce processes that are di-
rectly usable without major modification and evolutionary improvement. Process usability is a
function of process design, user experience, the project domain, and many other factors. Be-
cause user needs vary widely even within a single organization, and because the needs of
each user will change with experience, they must be thoroughly and regularly monitored. Di-
rect, continuous, and r'omprehensive user involvement is thus essential for effective process
development and evolution. Such involvement wiHl generate improvement suggestions that

CMU/SEI-92-TRi-4

must be handled. This in turn will require process support facilities for tracking, recording, han-
dling, and installing process fixes and enhancements.

2.3 Enactment of Processes

It is desirable to define software processes with sufficient precision so that many of the routine
enactment tasks can be automated. Software engineering remains a highly creative process,
and for the foreseeable future, the opportunities for process automation will likely be limited to
the most routine activities and tasks. As a consequence, software process enactment issues
must consider human agents as well as automation through machine agents. The use of hu-
man agents raises issues of planning, controlling, monitoring, enforcing, and training. The
software process must also be monitored, measured, and repaired and it must relate to other
processes and activities within the organization. There are even questions of unauthorized in-
trusion, improper process modification, and process recovery.

In short, processes have the full range of enactment properties seen with data processing sys-
tems. At one extreme are small, largely autonomous, single string processes; at the other are
highly structured networks of interacting parallel processes. The issues of designing, planning,
monitoring, and controlling must also vary considerably across this spectrum.

2.4 Process Properties
Software processes must be evaluated. What constitutes a good process and how can one
tell if a particular process fits a specific user need? The first basic requirement is that the prop-
erties of a specific process should fit the needs of the project using them. While a comprehen-
sive discussion of process assessment and evaluation is beyond the scope of this paper, there
is a growing body of literature on these subjects. Software process assessments have been
widely used by U.S. software organizations for several years [Humphrey 89] and there are
now a number of organizations that conduct such assessments as a business. The U.S. De-
partment of Defense has also adopted an SEI-developed capability evaluation method for de-
termining the most effective software contractors from among several offerers. The SEI is also
developing a Capability Maturity Model which is a comprehensive listing of those practices that
are appropriate for various levels of software process capability IPaulk 91].

The current state of software process technology is such that process evaluation is currently
limited to a rudimentary examination of the presence or absence of various activities. As this
field evolves, more comprehensive evaluations will be practical. Such evaluations will likely
examine the process structure, its behavior under various conditions, and its adaptability. At
this time, it is premature to attempt quantitative measures of process quality. However, there
are several available qualitative measures. These relate to how difficult the process is to use
and the quality of the results it produces. Other properties concern the degree to which the
process has persistence or whether it merely executes short tasks in response to an external
agent.

CMU SEI-92-TR-4

3 Software Process Definitions

This chapter presents the selected "core" process terms together with their definitions and ex-
planatory comments. The definitions are formatted as follows: the term being defined is in
boldface, the definition for the term is in italics, and any rationale or explanatory information
is in plain text following the definition. Unless otherwise noted, these terms are all defined in
the context of the software process. However, since we have attempted to abstract the terms
from the particular domain of software process, they may have broader applicability. Where
this is confusing, it is suggested that the reader add the word "process" before any term. For
example, "development" equates to "process development."

The first definition is the term process, which is defined at a highly abstract level. It is followed

by two terms that refer to pieces of a process.

Process: A set of partially ordered steps intended to reach a goal. While the
term process is used in many different contexts, the context for this definiiion
is software. For software development, the goal is production or
enhancement of software products, or the provision of services. Other
examples are the software maintenance process, the acceptance testing
process, or the process development process.

Process Step: An atomic action of a process that has no externally visible
substructure. The process step is the basic process abstraction. A process
step is a discrete, bounded activity of finite duration with a level of abstraction
that depends on the enacting context. For example, a process step, as used
by a programmer and included in a process script, would generally require
substantial elaboration to be suitable for a process program.

Process Element: A component of a process. Process elements range from
individual process steps to very large parts of processes. They may be
templates to be filled in, fragments to be completed, or abstractions to be
refired.

Process Script: A process definition that is suitably designed and
instantiated for enactment by a human. Process scripts are designed to adapt
to the particular user's needs and often must be modified as users gain
experience and facility.

Process Program: A process definition that is suitably designed and
instantiated for enactment by machine. Process programs must be designed
to fit the particular computing environmental needs for format and detail and
generally be tested, debugged, and modified much like computer programs.

The remainder of the definitions are organized into several groups. First, the Framework for
Process Definition defines foundation terms That are used in the subsequent definitions. Next,
the terms in Engineering of Process elaborate on the process of developing process defini-
tions. Concepts concerning the enactment and management of defined processes are de-
scribed in Enactment of Processes. Finally, terms defining properties of defined processes are
discussed in Process Properties.

CMU/SEI-92TR-4 7

Friure 3-1 illustrates the relationship among many of the process entities and tne actions on them. Here,
tne boxes represent various process elements and the arrows refer to actions. Starting, for example, with
an initial process arcnitecture, a process design is deve;oped. From there, one or more process definitions

car be developed. This design and development act;. ,ty may uncover architectural defects or desirable
cn ancements that are fed back to evolve the proc.css architecture. Further, existing process architoz-
tures, designs, and definitions may be tailored to fit c:-anging project needs. With a complete process def-
irntin, a plan is developed for its project use. Th!.-. involves analysis and adjustment through a control
p-ocess and generally involves external constraints. An effective control process will also utilize measuro-
ments through process traces. Once an apprcpriate plan is established, the process definition is convert-
ed to enactable form (instant'ated). Wnen this enactable process is sent to the initial enactment state and
a sutable agent is provided, an enacting process can be initiated. During enactment, the control process
MOnitors performance and makes appropriate adjustments. This dynamic control phase may Involve rof.
orence to tIe process plan, the process definition, and the process trace.

,(,t 'J , I 'j.' It• .

1. Tailor

Process 2. Develop

3 Archtitecature .EoW

4.Instatiate

_, Interact

7, Plan

S, Enact

"Process , Monor
ussign 10, Analyze

" 11, Adjust

roesFProcess
] lltion 7- Plan

Process
11 10 Constraint

S.. -. "- ' 10

Cno�4 Ansclable1 10

L. L 10 Proce.s]

Control ac

PoI Process

ProcessJ

Agent

Figuro 3-1 Process Enlltlc and Actions

(,hMttJ'l I g; 111 4

3.1 Framework for Process Definition

This section defines the basic process artifacts. The next section introduces terms that repre-
sent actions on these objects. For example, this section defines process designs as the results
of designing processes.

The structure depicted here differs somewhat from current general usage in the process com-
munity. Here, we have chosen to establish a design hierarchy somewhat analogous to that
used in system engineering. With systems, one starts with an overall architecture and pro-
ceeds to a design, then an implementation, and then to an operable unit. With processes, the
flow is the same only we replace the term implementation with process definition and operable
unit with enactable process. In prior process parlance, the terms process program and pro-
cess model have been used more or less interchangeably to refer to what are here called de-
fined processes. This new terminology is introduced because we found that more precise
terms are required. The terms model and program continue to be used in a form that is closer
to traditional usage in software and computer science.

Process Architecture: A conceptual framework for consistently
incorporating, relating, and tailoring process elements into enactable
processes. An architecture provides a space of process designs. A process
architecture is often needed when a process must relate to other existing or
future processes. Examples of such needs are process element reuse,
process enhancement, and process tailoring. An essential property of a
process architecture is its ability to indicate whether a process element is or
is not compatible with the architecture.

Process Design (noun): An embodiment of a process architecture that
establishes the architectural options and parameters, the existing elements
to be reused, the structure and behavior of the new elements, and the
relationships among these elements. A process design may be for a specific
project, an entire organization, or possibly for larger classes of projects or
organizations. A process design is produced to meet specified goals. The
completed design includes the process definition and instantiation standards
and interfaces, the overall process structure, and the functions and
relationships of the process elements. This may include reusable process
definitions and partially or fully populated process e!ements. The design
specifies the selection choices to be made during process development.

Process Definition: An implementation of a process design in the form of a
partially ordered set of process steps that is enactable. At a lower level of
abstraction, each process step may be further refined into more detailed
process steps. A process definition may consist of (sub)process definitions
that can be enacted concurrently. Process definitions whose levels of
abstraction are refined fully are referred to as complete or fit for enactment.
Completeness, however, depends on context since a definition that is
complete for one process agent may not be for another. A process definition
may be for a class of projects, a specific project team, or an individual
professional.

0 . .CMUISEI-92-TR-4

Process Plan: A specification of the resources necessary for the enactment
of a process definition, the relationships of these resources to process steps,
the products produced by these steps, and any constraints on enactment or
resources. Process plans guide the instantiation and use of processes while
project plans guide the design, development, evolution, and tailoring of
processes (or products). Process plans are created with respect to a process
definition containing process steps to be planned and managed. Resources
include human process agents, computer resources, time, and budgets.
Relationships refer to the estimation or assignment of resources to process
steps in order to meet project objectives. The more common term of project
plan typically contains work packages, i.e., a process definition at a certain
level of abstraction, together with one or more process plans. The distinction
between the project plan and the process plan Is Important because effective
project planning is facilitated by the existence of a defined process, This often
requires that the process plan be established and Implemented in parallel
with or even before the project plan. Because of the time and resources
required, the process design and development must be done in advance of
the project need.

Enactable Process: An instance of a process definition that Includes all the
elements required for enactment. An enactable process consists of a process
definition, required process inputs, assigned enactment agents and
resources, an initial enactment state, an Initiation agent, and continuation and
termination capabilities. A process that lacks any of these conditions Is not
enactable. It should be noted that while enactable processes may not actually
terminate, at least for long periods, they must have a termination capratillity so
they can be stopped in an orderly way when necessary.

Process Model: An abstract representation of ei process architecture,
design, or definition. Process models are process elements at the
architectural, design, and definitions level, whose abstraction captLres those
aspects of a process relevant to the modeling. Any representation of the
process is a process model. Process models are used where use of the
complete process Is undqsirable or impractical. A process model can be
analyzed, validated, and, if enactable, it can simulate the modeled process.
Process models may be used to assist In process analysis, to aid In process
understanding, or to predict process behavior.

3.2 Engineering of Processes
This section includes discussions of concepts related to the engineering of processes, The en.
gineering of a process is a process that itself can be defined and engineered.

Development: The act of creating enactable processes, It may includG
planning, architecture, design, instantiation, and validation. If the process
development activity is for a complete process, all or most of those activities
should be conducted. If, however, the development effort is to repair or
enhance an existing process, an abbreviated set of activities might bo used.

CMU/SEI-92-TR-4 1

Tailoring: The act of adapting process designs and process dehnltions to
support the enactment of a process for a particular purpose. Process tailoring
may involve the use of process templates and may result in specialized
process definitions.

PI:nnlng: The act of developing a process plan for the enactment of a
process definition. Process planning should typically precede process
Instantlation and enactment. If the process being planned, for example, was
process development, then the process plan would be part .of the process
development project plan.

Instantlation: The act of creating enactable processes from process
definitions andprocess plans. Process Instantlation may be static or dynamic.
In static Instantlation, the complete process definition is Instantiated before
enactment. In the dynamic case, the process development, the Instantiation
of individual stops of that process, and the enactment of these stops may be
Interleaved. The dynamic case permits enactment of processes to be started
before their definition Is complete. Process Inatantiation may involve the
packaging of various process options and tailorings into a set of process
scripts or the assignment of resources to planned process steps. In this latter
case, Instanllation must be accompanied by both a process definition and a
process plan. In some cases, It may be desirable to simultaneously plan
multipla Instantlations to reduce the amount of planning and improve the
efficiency of Instantlation,

Evolution: The act of changing existing process definitions to meet ntvw
,•,wda, Proc@6B evolution i1 typically intended to correct known problems or
to evolve the process to meet new needs, Process evolution should be
planned and carefully managed to Insure the continuing integrity and quality
of the resulting products, Process definitions may evolve without affecting
existing enacting instances, or they may evolve together with their enacting
Instances. This latter case Is needed for non-stop or lorig.running processes.

3.3 Enactment of Proceses
Trnigr dealing with enactment of processes are grouped Into four sub:groups: Process Enact.
merit, Proces! Control, Pioceos Authority, and Process Assurance. Process Enac'ment Intro-
duvts terms concerning the mechanics of enacting a process. Process Control addresses the
monitoring, analysis, and adjustment of a process to direct or to improve its behavior. The Pro-
cuss Authority terms deal with authorization, appraisal, delegation, and Intrusion, Process As-
suranco deals with the methods of adapting a process definition to address unexpected
situations, and with the means for ensuring proper enactment of the established process def-
Inition,

Process Enactment
Agent: An entity that enacts a process dofinition. This entity may be a person
following a process script or a machine executing a process program, The
procos• agent Interprets the onactable process.

*2 CMU.'SEI-92-TR-4

Process Constraint: A defined condition that an enacting process must
satisfy. Process constraints typically relate the enacting process to external
processes or agents. Examples of process constraints are product
requirements, authorizations, standards, and procedures. Such constraints
may be included in process designs, process programs, process scripts,
process architectures, or process plans.

Enactment State: The state of a particular enactable process. The
enactment state consists of:.

"* enactment flow pointers that refer to the steps in the process
definition currently being enacted

"* state information reflecting the satisfaction of process constraints

"* the satisfaction record of conditions and dependencies

"* current resource utilization records

"* the status of the work products being produced

The process enactment state is changed through enactment of a process
step, through interaction with a cooperating process, or through initiation,
suspension, resumption, or termination by a controlling process. The
specification of the process state must also consider the states of other
related entities, whether precisely defined or not. Examples of such related
entities are the process plan, the associated product, the project, and the
organization. The process enactment state is associated with an instance of
an enactable process. The enactable process, in turn, identifies the specific
version of the process definition being enacted. Since the process steps may
have various levels of abstraction, their process states must also have
equivalent levels of abstraction.

Enacting Process: An active enactable process, i.e., an enactable process
whose agent or agents are executing the process definition. An enacting
process may be in a suspended state if an assigned process agent is not
available or other process constraints are not satisfied.

Interaction: The Interchange between two cooperating enactable processes.
This Interchange may be for the purpose of communication (interchange of
data) or coordination (interchange of control). The interchange may be
synchronous or asynchronous, and its state data may be accessible or
hidden. That is, one process may have access to state data for other
processes while they have no access to its state data. Andrews discusses a
set of process interaction paradigms in distributed systems, many of which
can also be applied to the software process [Andrews 91).

Automation: The use of machine process agents in process enactment.
Here, the use of a machine agent is facilitated by a fully developed process
definition embodied in a suitable process program.

Process Control

Control Process: A process that exists separate from an enacting process,
but has access to its state data and can affect its enactment. A control
process, for example, may initiate, monitor, adjust, or terminate its controlled
process or processes. The form of process control is a key process design

CMU/E-92-TR.4 --- 13

decision. It may be fully centralized or distributed. In the distributed case, for
example, one can visualize each process step behaving like a program
procedure that invokes other steps. This would permit the design of recursive
processes where steps may call themselves.

Monitoring: The observation of the enactment of a process. Monitoring is
performed by a separate observer or control process that monitors the
enactment state of the observed process. This observation is performed
concurrently and typically with minimum interference in the behavior of the
process being observed. Process monitoring may be performed by the same
process agent that is enacting the process or by a separate agent. The
purpose of process monitoring is to gather data on the enactment state and
process resource utilization. This data Is then used to provide a process
measurement database for use in process planning, analysis, control, and
adjustment.

Process Trace: A sequence of snapshots of the enactment state reflecting
the observed enactment history. Tracing is one means of monitoring and
measuring a process. A trace may be of resource utilization, enaction time,
error occurrences, or any other desired parameters.

Analysis: The use of process traces, process definitior,s, and process plans
to assess process behavior. Process analysis may be performed to
determine if an enacting process is conforming to process :,onstl dints, if it is
meeting plan objectives, or if process plan adjustments or process definition
changes are required. Process analysis is also an important part of process
evolution.

Adjustment: The influence of a control process over the enactment of
another process. This influence may be guided by analysis of observed
process data and exercised through changes to the process enactment state,
through reassignment of resources, or through changes to the process
definition.

14 CMU/SEI.92.TR-4

Process Authority
Approval: The granting of the right to enact a planned process or process
step. Approval is given in accordance with the established process definition

and process plan by an authorized process agent. Lack of approval from a

designated responsible authority (controlling process) constitutes a violation
of process constraints. For example, Mr. Jones may approve a specific
process change. His signature is the approval.

Authorization: The granting of the right to give approval. The establishment
of explicit authorities and responsibilities is an essential part of process
planning and instantiation. For example, Mrs. Smith authorizes Mr. Jones to
approve process changes.

Delegation: The authorizing of other agents to enact process steps that the

delegating process (agent) Is authorized to perform. Delegation possibly
involves refinement of the process definition before the responsibility to enact
is transferred. For exampe, Mr. Jones may delegate his approval authority to
Ms. Doe.

Intrusion: Unauthorized process monitoring, adjustment, or repair. One
example of Intrusion could be a case where a project-specific tailoring
improperly changes the baseline process.

Process Assurance

The first two terms assure correct enactment by moditying the enacting process, while the sec-

ond two items refer to activities that focus on assuring that the process enactment follows the

process definition.

Repair: The temporary correction or adjustment of a non-conforming process
to meet an Immediate need. Repairs are typically required when there Is
insufficient time for process evolution or when the adjustment is a unique
event. Process repair actions may result In process improvement proposals
for process evolution.

Recovery: The adjustments required to allow continuing enactment after a
process Incidont. Process incidents may result from a process IntrisiJon, the
occurrence of an event that was not anticipated by the process definition, or
a process definition defect.

Enforcement: The activities used to Insure that process enactment conforms
to process constraints. Enforcement may or may not be effective, depending
on the capabilities of the process agent and the enforcement methods used.
This Is particularly the case with human process agents. Enforcement may
also include the Initiation of (possibly predefined) consequences In case of
constraint violation.

Guidance: The activity of providing the enacting process agent with
assistance regarding the legal steps at any point during process enactment.
Guidance may be provided by a control process and may involve process
cues, process Interaction, or process management.

CMU/SEI-92-TR-_4 15

3.4 Process Properties
The process property terms relate to the properties of entire processes as well as to the
properties of their elements. The process property terms are divided into two categories,
static and dynamic. Static properties concern the characteristics of process definitions,
enactable process, and process results. The dynamic properties concern the enactment
behavior of processes.

Static Process Properties

Accuracy: The degree to which the product produced by the process
matches the Intended result. Note that neither the product produced by an
accurate process nor the product intended by that process may match the
actual need.

Fidelity: The faithfulness with which a defined process is followed. Fidelity
concerns the degree with which the human or machine agents performing the
process exactly follow the defined actions. Fidelity is related to enforcement.
Effective enforcement guarantees high levels of fidelity, although high levels
of fideiity may occur without stringent enforcement.

Fitness: The degree to which the people or machines enacting the process
can faithfully follow actions It specifies. A fit process definition is thus
designed so the enacting process agent can faithfully follow It, whi!e an unfit
process definition may be so poorly represented as to be impractical,
Inconvenient, or unintelligible. Note that process fitness may be achieved
through other means than process design and definition. Examples are
training and technical support.

Precision: The degree to which the process definition specifies all the
actions needed to produce accurate results. That Is, a precisely defined
process executed with fidelity produces an accurate result.

Redundancy: A process step is redundant if its removal would not alter the
results of the pi-ocesb, given that the process is executed with fidelity.
Redundancy may be added to compensate for human or other errors in
process enactment, i.e., low process fidelity.

Scalability: The breadth of activities for which the process definition is
designed. This might include the ranges in numbers of people, size of
product, time duration, product life cycle, or development environment for
which the process Is fit and precise. A highly scalable process is thus likely to
be of more general value than one that is less scalable.

Maintainability: The degree to which the process is dasigned to readily
permit static or dynamic process evolution. Maintainability Is achieved
through localization of information, a cleanly structured design, and wel:
architected interfaces. The purpose of such design approaches is to limit the
Impact of process changes and thus simplify the process change process.

16 CMU'SEI-92-TH-4

Dynamic Process Properties
Dynamic process properties concern the singular behavior of a process and the nature of its
interactions with other processes. The first three properties concern singular process behav-
ior, while the latter two deal with the relationships among processes.

Lifeness: The degree to which an enacting process that contains concurrent
interacting sub-processes deals with deadlock, starvation, and termination.
The degree of lifeness indicates whether a process is intended to terminate
and does terminate, or whether it is intended not to stop and does not stop.
Deadlock refers to the situation when two or more interacting processes wait
for each other. Starvation results from improper process design or from
excessive diversion of critical enactment resources, not L.Ilowing the process
to progress according to plan.

Robustness: The degree to which the process rejects intrusion. A robust
process, for example, would typically be maintained under configuration
control, thus rejecting unauthorized changes to the process definition.

Fault Tolerance: The degree to which the process, once an intrusion has
occurred, either continues to produce accurate results or recognizes the
inaccuracy of its results and initiates corrective action. Here, for example, a
disciplined change management system would insure that project-specific
changes were isolated from the baseline process.

Autonomy: The degree to which an enacting process operates
independently of other processes. The degree of autonomy indicates the
extent to which the process and all its sub-processes are independent of
other processes.

Responsiveness: The degree to which an enacting process proactively
initiates and controls other processes, or reactively responds to events from
other processes. A highly responsive process thus may be highly incremental
and frequently in an enactable condition waiting for interactions to trigger
further enactment. A high degree of responsiveness may entail a reduction in
resource utilization efficiency.

CMU'SEI.92-TR-4 17

4 Domain-Specific Use of Process Concept
Definitions

The following are some examples of process terms in several domains that are expressed us-
ing this core set of terms. The purpose of these examples is to illustrate the use of the core
set of terms for defining additional process terms and to provide some concrete examples of
these concepts and definitions. We have chosen the domains of project management, oper-

ating systems, and process engineering.

4.1 Project Management Domain

Role: The responsibility for enacting a process or subprocess definition. An
agent, when enacting a process, is referred to as assuming the process role.
In this role, the agent is limited to the set of operations reflected in the steps
of that process. These operations are specified in the script for a human
agent or in the program for a machine agent. A process may have more than
one participating agent.

Task: A process step typically enacted by a human, requiring process
planning and control. This definition describes the term task as it is typically
used in project management or for managing employee work assignments.

Contract: A formal agreement on a process plan and a set of process
enactment states and results. This agreement constitutes a process
constraint, whose violation has (possibly legal) consequences.

Policy: The guiding principles for process development and/or enactment.
They often result in process constraints, usually at a high level, that focus on
certain aspects of a process and influence the enactment of that process.

Project: An enactable process or enacting process, whose architecture has
control processes for managing the project and enacting processes for
performing the project tasks. A project could be to develop a product or to
develop a process definition.

Project Management: An enactable or enacting process whose goal is to
create project plans and, when authorized, instantiate them, monitor them,
and control their enactment. These responsibilities are commonly known as
project planning, project control, and process control. When properly
performed, the project management function is typically highly interactive in
reviewing and approving process plans, in using process analysis results,
and in making process adjustments.

Project Plan: The project plan consists of a process definition at a level of
abstraction such that its process steps have to be managed in the context of
one or more plans (i.e., resources, responsibilities, and schedules). When
engineering of the process is involved, project plans should explicitly
incorporate appropriate process plans.

CMU-SEI-92 -TR.4 4----------- - --

- - - - - - - - - - - - - - - -- - - - -i

Project Manager: A human agent with overall responsibility for enacting the
control process. With a properly designed process, this includes all aspects
of controlling and managing project execution. Project managers are also
frequently involved in such related activities as requirements determination,
goal setting, resource allocation, contract negotiation, systems partitioning,
coordination, and post contract evaluation.

4.2 Operating System Domain

In an ACM Computing Surveys article, Horning and Randall have surveyed and discussed op-
erating systems concepts as they relate to process support [Horning 73]. The terms used by
the authors reflect the vocabulary used by the research community at the time. The table in
Figure 4-1 lists some of the most prevalent terms and relates them to the definitions in this
paper. The reader may also notice that, in the context of operating systems, there is less em-
phasis on a priori planning, while increased emphasis is placed on dynamic scheduling and
different forms of process interaction. The terms abstraction and refinement have been implic-
itly introduced in the context of the definition of process steps in this paper, while they have
been spelled out explicitly by Horning and Randall.

4.3 Process Engineering Domain

This domain concerns the process for developing processes. Such a process development
process can be developed, tailored, planned, instantiated, evolved, and enacted. Further,
since large organizations would generally need many different kinds of processes and since
many of these processes will be of different magnitudes and in different evolutionary stages,
the organization would also generally need more than one process development process. This
process family, or system of process development processes, would likely include a process
architecture, a library of reusable process definitions, and various standards, templates, and
forms.

The process architecture would relate all members of this process family. It might have the

following sections:

"* definitions of the major process elements and their functions

", naming conventions and standards

"* standard process templates or formats

", interface specifications

", composition and tailoring rules

The library of reusable process elements would be used as common building blocks to con-
struct multiple process definitions. These reusable elements would be developed consistently
with the architecture and would be usable with any process definition that met the same stan-
dards. Some examples of such reusable elements are Process Development Planning, Pro-
cess Requirements Definition, and Process Development Estimation. This last example would
be one of the lower level reusable elements referenced by Process Development Planning

20 CMU/,SEI-92-TR-4

Examples of the standards needed by the process development process are Process Review
Standards, Process Requirements Standards, and Process Naming Standards. Typical tem-
plates would show the formats for process development plans, the contents of a process de-
velopment estimate, and the structure and format for a process development architecture.

'SE 2- T R-gz-- 4 21

Typical forms would be the Process Development Estimate and the Process Improvement
Proposal.

Operating system term Process concept Explanation

Process Process

Process abstraction Not explicitly defined A process step in form of sub-
routine or process embodying
the abstraction

Process refinement Not explicitly defined The act of defining the substruc-
ture of a process step

Process state Enactment state State of execution of a process

Computation Piocess trace

Processor, machine Agent Typically refers to machine
agent

Exact realization Precision

Process interaction Interaction Three forms: cooperation, com-
petition, interference

Interpretation Enactment

Image Enactable process Executable load image of a pro-
gram

Program Process definition

Language description Not explicitly defined Notation to express process
definition

Executive Control process giving Focus on adjustment of enact-
approval for enactment ment state

Debugger Control process Focus on monitoring, analysis,
performing repair and adjustment of enactment

with respect to desired behav-
ior of process definition

Figure 4-1 Process Term Sample In the Operating System Domain

22 CMU'SEI.92-TR.4

Examples of end-user process development scripts are the following:

1. The process for developing a new family of processes would include a pro.
cess architecture, a reusable element library, and end-user scrl;,ts. An exam.
pie of such a process family would be the complete sot of software develop.
sent and maintenance processes needed by a largo software organization.

2. The process for developing a new end-user script that conformed to on
existing process architecture would Include new scripts and possibly some
new or modified reusable process elements, An example of such a process
might be the maintenance and support process for a newly developed
software product.

3. The process for enhancing an existing process definition to meat some now
need would likely include modifications to the existing procesp script with
possibly some new reusable element definitions or modifications, An
example of such a process enhancement would be the modification of a
software development process to conform to a newly dofinod customor
acceptance testing requirement. In the case of more substantial process
modifications, changes or additions to the process architecture might be
needed as well,

(OAU'JI I 111 4

5 Conclusions

This core set of process definitions and concepts is intended both to facilitate the broader ap-
plication of these concepts In the software community and to serve as a foundation for further
definitional work, Since software process technology Is in an early state of development, it is
assumed that these core terms will undergo evolutionary change and that many more terms
will be added. It Is, however, hoped that this core set will be sufficient to facilitate communica-
tion on the software process and various process related domains.

The development of these definitions has been a surprisingly rewarding process. Not only has
the work of listlng and defining these core concepts and terms clarified and sharpened our
views, but we have learned a groat deal from Interacting with many of our associates. We have
also found that there is enormous Interest In this subject. Software process technology is new
and developing rapidly, and is just beginning to be structured and codified. It is an important
and useful field for practitioners, and It Is a rich and largely unexplored field for research.

As we delve Into this subject, it Is clear that there is a richness and substance to the technology
that Is barely discernible on the surface. In principle, we are talking about the design of pro-
coisgs that will permit fallible humans, with the aid of machines, to produce infallible products.
To do this eonomlcally and to responsively meet soc!.?tys needs Is a challenge of the first
order, The challenoe of software process research Is thus to find economic and effective ways

to have many people cooperatively perform complex and precise intellectual iasks. Success
will be measured both by the offectiveness with which these processes meet users' needs and
by tho dogroo to which they contribute to making software engineering a rewarding and fulfill-
ing profession, As this field evolves, the technology it develops will undoubtedly be of value to
many other human activitlos,

CMU/SEI-92T4.4 25

6 Acknowledgments

This work would not have been possible without the many perceptive and helpful comments
we have received from all over the world. Many people have provided us suggestions and en-
couragement and many others have sent us pages of detailed comments on our various
drafts. This work has clearly taken a great deal of time and we are most grateful. With very few

exceptions, we have incorporated these inputs in this paper and its quality has thereby been
greatly improved. We particularly want to thank Ed Averill, Judy Bamberger, Maryse Bourdon,
Fanny Camilleri, Bill Ett, Itana Gimenes, Jim Hamilton, Hal Hart, Karen Huff, Letizia Jaccheri,
Jim King, Nazim Madhavji, Mark Paulk, Sam Redwine, and Dieter Rombach for their invalu-

able help. The reviewing and editing of this paper was also greatly assisted by the kind support
of several reviewers. Our particular thanks go to Ed Averill, Mary Beth Chrissis, Alan Christie,
Bill Curtis, Susan Dart, and Mark Paulk. Our thanks also to Dorothy Josephson for her helpful
and timely support with the many revisions and drafts.

CMU'SEI-92-TR-4 27

Table 1 Index of Process Definitions

I=rm eIrm
Accuracy 16 Planning 12
Adjustment 14 Precision 16
Agent 12 Process 7
Analysis 14 Process Architecture 10
Approval 15 Process Assurance 15
Authorization 15 Process Authority 15
Automation 13 Process Constraint 13
Autonomy 17 Process Control 14
Control Process 14 Process Design 10
Delegation 15 Process Definition 10
Development 11 Process Element 7
Enactable Process 11 Process Enactment 12
Enacting Process 13 Process Model 11
Enactment State 13 Process Plan 11
Enforcement 15 Process Program 7
Evolution 12 Process Script 7
Fault Tolerance 17 Process Step 7
Fidelity 16 Process Trace 14
Fitness 16 Recovery 15
Guidance 15 Redundancy 16
Instantiation 12 Repair 15
Interaction 13 Responsiveness 1 7
Intrusion 15 Robustness 17
Lifeness 17 Scalability 16
Maintainability 16 Tailoring 12
Monitoring 14

28 CMOIbl:I 02.THI.4

References
(Andrew& 91] Andrews, G.R., "Parac ,. or Process Interaction in Distributed Systems,"

ACM Computing Surveyb, ;'iarch 1991, pp. 49-90.

[Hornig 73] Horning, J.J. & Randell, B., "Process Structuring," ACM Computing Sur-
veys, March 1973, pp. 5.24.

(Humphrey 91] Humphrey, W.S., Snyder, T,.F & Willis, R.R., "Software Process Improve-
ment at Hughes Aircraft," IEEE Software, July 1991, pp. 11-23.

[Humphrey 89) Humphrey, W.S., Software Process Management, Addison-Wesley, Read-
Ing, MA, 1989.

(Kolkhorst 88] Kolkhorst, B.G. & Macina, A.J. "Developing Error-Free Software," Proceed-
ings of Computer Assurance COMPASS '88, NIST, IEEE, July 1988.

1Osterwell 87) Osterweil, L.J., "Software Processes are Software Too," Proceedings of 9th
International Conference on Software Engineering (ICSE9), IEEE Comput-
er Society Press, April 1987.

(Poulk 91) Paulk, M.C., Curtis, B. & Chrissis, M.S., et al., Capability Maturity Model
for Software, Software Engineering Institute Technical Report CMU/SEI-91-
TR-24, OTIC ADA240603, Carnegie Mollon University, Pittsburgh, PA, Au-
gust 1991.

(Simon 81) Simon, HA., "Studying Human Intelligence by Creating Artificial Intelli-
gence," American Scientist, vol. 69(3), May-June 1981, pp. 300-309.

CMU/SEI9-2.Tf 4 29

UNu1MrTED. UNCLASSIFIED
SHarrY CLA.SSuOWATION OP TM]S PAGE

REPORT DOCUMENTATION PAGE
Is. REPoRr SECURITY CLASSEFICATION lb. RESTRICTIET ,ARKINGS
Unclassified None

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILBtUTY OF REPORT'

N/A Approved for Public Release
2b. DECLASSIICATION/DOWNGRADhNG SC-EDL"LE Distribution Unlimited

N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S 5. MONT'ORING ORGANIZATION REPORT \'UUNmER(S)

CMU/SEI-92-TR-04 ESD-TR-92-04

66. NAME OF PERFOR,.G ORGANIZA"ION 6b. OFFICE SYMBOL 7&. NASE OF MONTORJNG ORGANiZATION

Software Engineering Institute (LfaplbIe) SEI Joint Program Office
SEI

6c. ADDRESS (City, State and ZIP Code) 7b_ ADDRESS (City, State and ZIP Code)

Carnegie Mellon University ESC/AVS
Pittsburgh PA 15213 Hanscom Air Force Base, MA 01731

94. NAME OFF.NDING/SPONSOJNG 8b. OFFICE SYMBOL 9. PROCL'REM-ENr NSTRUMEN'T ID•ENTIFICATION NL-MIH ER

ORGANIZATION (if app.blc) F1962890C0003
SEI Joint Program Office ESC/AVS

Ie. ADDRESS (City, State and ZIP Code) 10. SOURCE OF FN.%DING NOS

Carnegie Mellon University PROGRAM PROJECT TASK WORK U'NTT
Pittsburgh PA 15213 EU.NIEN" NO NO NO NO.

63756E N/A N/A N/A
I. TrILE (InWlude Seeinty Clauiication)

Software Process Development and Enactment: Concepts and Definitions
12. PERSONAL ALTrOR(S)

Peter H. Feiler and Watts S. Humphrey
13a. TYPE OF REPORT 13b. TIME CGvER2) 14. DATE OF REPORT (Yr.. Mo., Day) IS. PAGE CONt.\-

Final I September 1992 30
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBIFCT TERMS (Continue on rvewn of neccuasry and idcttfy by block number)

FIELD GROUP SUB. OR. enactment of process process properties
engineering of process software process concepts

process development

19. ABSTRAF" (C-Ue on rev=.e f neea-aiy and tdentify b-,)oak number)

The scientific treatment of the software process is relatively new and, as with any new field, the initial terminol-
ogy is often confusing. When terms can have a diversity of meanings, technical communication is more difficult
and technological progress is constrained. This paper defines a core set of concepts about the software pro-
cess. These concepts are intended to facilitate communications and to provide a framework for further defini-
tions. The definitions focus on essential concepts; however, they do not represent a comprehensive glossary
of common software process terms. Following an initial overview, this paper outlines the basic process con-
cepts which underlie the definitions. The definitions are then grouped in four sets: a framework for process
definition, an engineering of process, an enactment of process, and process properties. This is followed by
illustrations of the use of these concepts in several domains. The paper concludes with some observations on
the definition process.

(p',e~a.se .,m••

20 DISTRIBL'TION/AVAMLABIUTY OF ABSTRACF 21. ABSTIRACT SECURrPr C.ASSIIl.CAn-ON

U-NC.ASSIFIED/UNLIMT'ED SAME AS RPTD'I1C USFES1 Unclassified, Unlimited Distribution

22. NAME OF RESPONSIBILE IVJ)I%'DYUAL 22b. TELEPIIONE NUMBER (Inc:2e Area Codet 220 OIICl- SY MIiOi.

Thomas R. Miller, Lt Col, USAF (412) 268-7631 ESC/AVS (SEI)

DD FORM 1473,93 APR EDTON of I JAN 73 IS OBSOLETE UNI.IMI rim), LNCI.ASSII.iI)
SECUIUTY CI.ASSIFICATION (1 11tB

DAL I:

1DO7

